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Multidimensional Sinusoidal Frequency Estimation Using
Subspace and Projection Separation Approaches

Longting Huang, Yuntao Wu, H. C. So, Yanduo Zhang, and
Lei Huang

Abstract—In this correspondence, a computationally efficient method
that combines the subspace and projection separation approaches is
developed for �-dimensional (�-D) frequency estimation of multiple
sinusoids, where � � �, in the presence of white Gaussian noise. Through
extracting a 2-D slice matrix set from the multidimensional data, we devise
a covariance matrix associated with one dimension, from which the corre-
sponding frequencies are estimated using the root-MUSIC method. With
the use of the frequency estimates in this dimension, a set of projection
separation matrices is then constructed to separate all frequencies in the
remaining dimensions. Root-MUSIC method is again applied to estimate
these single-tone frequencies while multidimensional frequency pairing is
automatically attained. Moreover, the mean square error of the frequency
estimator is derived and confirmed by computer simulations. It is shown
that the proposed approach is superior to two state-of-the-art frequency
estimators in terms of accuracy and computational complexity.

Index Terms—Multidimensional frequency estimation, subspace
method, projection separation.

I. INTRODUCTION

The topic of�-dimensional (�-D) frequency estimation, where� �
�, has received extensive attention for its widespread applications in
numerous fields such as MIMO wireless channel sounding [1], mobile
communications [2], MIMO radar [3], sonar, seismology and nuclear
magnetic resonance spectroscopy [4]. Many high-resolution subspace-
based parameter estimation techniques have been proposed to solve
this problem such as multidimensional folding (MDF) [1], unitary ES-
PRIT [5], improved MDF (IMDF) [6], MUSIC [7], rank reduction es-
timator (RARE) [8], decoupled root-MUSIC [9] and higher-order sin-
gular value decomposition (HOSVD) [10] methods. Unitary ESPRIT,
MDF and IMDF techniques are based on the conventional ESPRIT ap-
proach where it is difficult to directly utilize the original multidimen-
sional data. Typically, they require to enlarge the received data to con-
struct a 2-D matrix with larger size, and then employ the ESPRIT-based
method to obtain the desired frequency pairs. Consequently, their com-
putational burden is very heavy particularly when the data size is large.
The RARE algorithm vectorizes the observed data to exploit the Van-
dermonde structure and matrix polynomials are constructed to find the
frequencies of each dimension. However, computing the polynomial
coefficients is a highly demanding job. In the decoupled root-MUSIC
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algorithm, �-D harmonic retrieval is decomposed into � 1-D prob-
lems by tensor decomposition [11], [12], which significantly reduces
the computational load, but pairing of the�-D frequencies is required.
On the other hand, the HOSVD method utilizes the structure inherent
in the received data at the expense of a high computational complexity.
In this work, our main contribution is to devise an accurate and com-
putationally efficient estimator for multidimensional frequencies in the
presence of white Gaussian noise with the use of the subspace and pro-
jection separation techniques.

The rest of this correspondence is organized as follows. The devel-
opment of the proposed estimator is presented in Section II. There are
two basic estimation steps as follows. We first extract a 2-D slice ma-
trix set from the�-D signal to construct a covariance matrix associated
with the first dimension, from which the corresponding frequencies are
estimated using the root-MUSIC method. With the use of the frequency
estimates in the first dimension, a set of projection separation matrices
is then devised to separate all frequencies in the remaining dimensions.
Root-MUSIC method is again utilized to find these single-tone fre-
quencies while multidimensional frequency pairing is automatically at-
tained. In Section III, the computational complexity and mean square
error (MSE) of the devised estimator are analyzed. Since our method
exploits covariance matrices whose size is characterized by the number
of sinusoids, its computational requirement is small when compared
with the conventional schemes. Section IV includes numerical exam-
ples for validating the theoretical findings and evaluating the proposed
approach by comparing with the IMDF [6] and HOSVD [10] methods
as well as Cramér-Rao lower bound (CRLB). Finally, conclusions are
drawn in Section V.

II. PROPOSED METHOD

A. Signal Model

The observed �-D signal model is

�� �� ������ � �� �� ������ � �� �� ������ �

�� � �� �� � � � ���� � � �� �� � � � � � (1)

where

�� �� ������ �

�

���

	�

�

���



�� � (2)

with � being the number of sinusoids, which is assumed to be known
a priori [13]. Here, 	� is the unknown complex amplitude of � th tone,
��� � ���� �� is the unknown frequency of � th component in the
�th dimension. The �� �� ������ is a �-D circular complex white
Gaussian noise with mean zero and unknown variance ��	 . It is assumed

that �� � �� � � �� �� � � � � �, and the frequencies are distinct in at
least one of the � dimensions. Given the � � �

����� samples of
�� �� ������ , our task is to find the �� unknown frequency param-
eters, namely, ������ � � �� �� � � � � �� � � �� �� � � � � �.

B. Estimation in First Dimension

For ease of presentation but without loss of generality, we start
frequency estimation in the first dimension with the assumption that

�� �� ���� � �� �. In tensor form, (1) is

��� � ��� �			 (3)

where ���� �����			� � � �� ������ � ���� 	� �� ������ �
�� �� ������ � ����	� �� ������ � �� �� ������ and
�				� �� ������ � �� �� ������ . That is, ��� and 			 are the
noise-free and noise-only components of ��� , respectively.

To reduce the dimension of ��� , we define ��� � �� , which is a set of
2-D slice matrices extracting from ��� , as follows:

��� � �� � ���� ���� � � � ��� ��� 
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�� ��� 
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Similarly, ������ is a noise-free 2-D matrix set extracting from ��� and
each of the ����
� � � � ������ 
� ����� � � � � ��� � � �� has the
form of (5), shown at the bottom of the page.

It is easy to verify that ����
� � � � � ����� 
� ����� � � � ���� can be
written as
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with � � �� � � � �� and������� being the conjugate transpose, transpose,
and diagonal matrix with vector � as its main diagonal, respectively.

Define ��� as the sample covariance matrix of matrix set��� ���, which
is computed as
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 ����� (11)

According to the structure of slice matrix ��� �	� 	� ��� 
 
 
 � ���, the
expected value of ���, denoted by ��, is
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where
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and �� is the �� ��� identity matrix.
In order to circumvent the problem of degraded estimation perfor-

mance in case of closely spaced frequencies in the same dimension,
we further propose the forward-backward (FB) smoothing [14], [15]
covariance matrix of ���:

����
� �

�


��� � �� ������ (14)

where �� � � �� is the exchange matrix with ones on its antidi-
agnoal and zeros elsewhere.

The expected value of ����
� is
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On the other hand, ����
� can be decomposed using eigenvalue de-

composition (EVD) as

����
� � �	��
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�	�
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�	�
�� (18)

where the column vectors of �	�� � � �� and �	�� �
� ��� �� � are the eigenvectors that span the signal and noise

subspaces of ���, respectively, with the associated eigenvalues being
the diagonal elements of �
�� and �
��.

Let
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�	�
��� (19)

Employing root-MUSIC method to estimate the frequencies based on
���, a null-spectrum function is constructed as:
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�
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��� ���	���� (20)

where 			���� � ��� ��� 
 
 
 � �� �� . The polynomial ����� has ����
�� roots and the first dimension frequency estimates ��
��� are ob-
tained from the � largest-magnitude roots inside the unit circle ac-
cording to � � �	
 .

C. Estimation in Remaining Dimensions

With the use of ��
���, a set of projection matrices ��� � � �
�� � 
 
 
 � � , is constructed to estimate all � frequencies one by one in
each of the �th dimension, � � � �� 
 
 
 � . The ��� is defined as
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Analogous to (4), we construct the 2-D slice matrices set ��� ���

and then use the projection matrix ��� on ��� �	� 
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 ���� which contains only the information of �
��� in
the �th dimension associated with �
��.

The ��� ���	� 
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 ���� is defined as

��� ���	� 
 
 
 ������ 	� ��	�� 
 
 
 ����

� ��� ��� �	� 
 
 
 ������ 	� ��	�� 
 
 
 ����

� ��� �� �������� 
 
 
 � �������	�� 
 
 
 �����
�
�

� ��� ����	� 
 
 
 � ����� 	� ��	�� 
 
 
 ���� (24)

where � � � �� 
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Similar to (11), we define a covariance matrix ����
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where � � � �� 
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The expected value of ���� is calculated as
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where
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with � being the �� � � zeros vector.
Furthermore, the FB smoothing version of 
���� is
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where �� � � �� is the exchange matrix.
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Taking EVD on 
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��� yields
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where the column vectors of 
����� � � �� and 
���� �
� ��� ��� are the eigenvectors that span the signal and noise

subspaces of 
���� , respectively, with the associated eigenvalues being
the diagonal elements of 
����� and 
����.

Define 
��� of the form:
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We see that the root-MUSIC method can also be used to obtain the
� th component in the �th dimension frequency, 
����, which are au-
tomatically paired with 
���� with the use of 
��� . The corresponding
null-spectrum function is

������� � ������
��� 
��� ������ (35)

where ������ � ��� ��� � � � � �� 	� . The polynomial ������� has
���� � �� roots and the �th dimension frequency of � th component

���� is obtained from the largest-magnitude root inside the unit circle
according to � � 	�
�� � � �� �� � � � � �� � � �� �� � � � � � .

To summarize, the steps in the overall estimation procedure are:
1) Compute 
���

� in (14) and perform its EVD
2) Compute 
� using (19) and use (20) to compute 
����� � �

�� �� � � � � �
3) Construct 
��� in (21) and compute 
���

��� using (29)
4) Take the EVD on 
���

��� , compute 
��� according to (34) and use
(35) to obtain 
����� � � �� �� � � � � �� � � �� �� � � � � �

TABLE I
COMPUTATIONAL COMPLEXITY OF FB-ROOT-MUSIC ALGORITHM

III. ALGORITHM ANALYSIS

A. Computational Complexity

The computational complexity of the proposed root-MUSIC algo-
rithm is studied and the results are provided in Table I. In summary,
its complexity is ������ � � �

������ � �����. On the other
hand, the computational requirement in the IMDF method [6] is
about ���	� and that of the HOSVD algorithm [10] is at least
�� �

������ � �� � ���	�� where �� is the number of spatial
smoothing subarrays in the �th dimension, � � �� �� � � � � �. Clearly,
the proposed method is more computationally attractive than [6]
and [10].

B. Mean Square Error

Analogous to (18) and (33), we define
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��� 	. Note

that �� � � � �� �� � � � � � , are the signal subspace eigenvectors of the
first dimension, �� are the associated eigenvalues with�� while�� is
the noise subspace of the first dimension. Meanwhile, ����� and �����
are the eigenvector and eigenvalue of the signal subspace of the � th
component in the �th dimension frequency, respectively, and ���� is
the noise subspace corresponding to �����.

Following [15], the MSEs of the first dimension frequency estimates
are computed as
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where ���� � ���������, and is the expectation operator.
On the other hand, the MSEs of the frequency estimates in the re-

maining dimensions are
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(39)

where ���� � ��������� .

IV. SIMULATION RESULTS

Computer simulations have been conducted to evaluate the fre-
quency estimation performance of the proposed approach for multiple
3-D and 4-D sinusoids in the presence of white Gaussian noise.
The algorithms without and with FB smoothing, denoted by root
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Fig. 1. ���� versus SNR with distinct frequencies.

Fig. 2. ���� versus SNR with distinct frequencies.

MUSIC and FB root MUSIC, are examined. The average MSE
of the �th dimension, denoted by ����� , is employed as the
performance measure. All results provided are averaged from 200
independent runs. Apart from CRLB [6], [17] and [18], the per-
formance of the proposed approach is compared with that of the
IMDF [6], HOSVD [10] algorithms. The signal power is defined as
��� � � �

� ��
� � � �

� ��
��� �� ������ ����� and �� �� ������

is scaled to produce different signal-to-noise ratio (SNR) which is
defined as ��	 � �����

�

� .
In the first test, we consider 3-D frequency estimation with �� �

�� � �� � 
� and the number of tones is � � �. The sinu-
soidal parameters are �� � 
	 �
���� � ��
�	 ����	 ����	 �� �
����		 �
���� � �����	 ���	 �
��	 �� � ����	 and �
���� �
����	 �
�	 �����. The results of ����� versus SNR are plotted
in Figs. 1–3. It is observed that although the MSE of the proposed
approach in the first dimension is comparable with that of HOSVD
scheme, the former is superior to [6] and [10], with performance close
to CRLB, in the remaining dimensions. The theoretical calculations
of (38) and (39) also agree very well with the simulation results for
sufficiently high SNR conditions. The above test is repeated with iden-
tical frequency scenario of �
���� � ��
�	 ���	 ����	 �
���� �

Fig. 3. ���� versus SNR with distinct frequencies.

Fig. 4. ���� versus SNR with identical frequencies.

Fig. 5. ���� versus SNR with identical frequencies.

�����	���	 ���� and �
���� � ����	 ����	 �����, and the re-
sults are plotted in Figs. 4–6. In this challenging case, the proposed
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Fig. 6. ���� versus SNR with identical frequencies.

Fig. 7. Computational time versus� .

method without FB smoothing performs the worst because there are
identical frequencies in two dimensions. Nevertheless, the one with FB
smoothing outperforms [6] and [10] for all dimensions and its perfor-
mance attains CRLB in the second and third dimensions.

In the second experiment, the average computational time of the in-
vestigated algorithms versus different �� with �� � �� � �� in
3-D frequency estimation are plotted in Fig. 7. It is seen that the pro-
posed approach is much more computationally efficient than the IMDF
and HOSVD algorithms, which aligns with the complexity analysis in
Section III.

In the third experiment, ����� for different frequency separation
by varying ���� is studied. We consider two 3-D tones with �� �

�� � �� � ��. The signal parameters are �� � �� �� � �������

������ � ������ ��	��� ��
��� ���� � ��
� and ���� � ���� while
���� is varying from ���� to ����. The corresponding results at�� �

�� dB are shown in Figs. 8–10. It is observed that the estimation per-
formance of proposed approach is inferior to the IMDF and HOSVD
schemes in the first dimension when the frequency separation is less
than ����. Nevertheless, its performance is comparable to them in the
other two dimensions.

Fig. 8. ���� versus frequency separation.

Fig. 9. ���� versus frequency separation.

Fig. 10. ���� versus frequency separation.

Finally, 4-D frequency estimation ����� versus SNR is studied
and the results are plotted in Figs. 11–14. The number of sinusoids is
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Fig. 11. ���� versus SNR for 4D Data.

Fig. 12. ���� versus SNR for 4D Data.

Fig. 13. ���� versus SNR for 4D Data.

� � � while �� � ����� � �� � �� � �. The signal parame-
ters are �� � �� ������ � ������ ������ ����� ������ �� � �������

Fig. 14. ���� versus SNR for 4D Data.

������ � ������������ ����� ������ �� � ������ and ������ �

������ ������ ������ ������.
Again, we observe that the performance of the proposed estimation

is comparable to those of the other two methods [6] and [10]. However,
the proposed method attains the CRLB and is better than other the two
methods for dimensions 2, 3, 4 at sufficiently high SNRs.

V. CONCLUSION

A new approach for frequency estimation of multidimensional si-
nusoids in additive white circular Gaussian noise has been developed.
The main idea in our methodology is to rearrange the 	-D sinusoids
as a series of 2-D slice matrices and combine the subspace and projec-
tion separation techniques. The frequencies in one dimension are first
estimated using the root-MUSIC algorithm, which are then utilized to
separate the frequencies in the remaining dimensions. Using the sep-
arated data, the remaining frequencies are then estimated one by one
using the root-MUSIC method such that the multidimensional parame-
ters are automatically paired. It is shown that the proposed algorithm is
superior to the IMDF and HOSVD methods in terms of computational
load and estimation performance.
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Computing Constrained Cramér-Rao Bounds

Paul Tune

Abstract—We revisit the problem of computing submatrices of the
Cramér-Rao bound (CRB), which lower bounds the variance of any un-
biased estimator of a vector parameter ���. We explore iterative methods
that avoid direct inversion of the Fisher information matrix, which can
be computationally expensive when the dimension of ��� is large. The
computation of the bound is related to the quadratic matrix program,
where there are highly efficient methods for solving it. We present several
methods, and show that algorithms in prior work are special instances
of existing optimization algorithms. Some of these methods converge
to the bound monotonically, but in particular, algorithms converging
nonmonotonically are much faster. We then extend the work to encom-
pass the computation of the CRB when the Fisher information matrix
is singular and when the parameter ��� is subject to constraints. As an
application, we consider the design of a data streaming algorithm for
network measurement.

Index Terms—Cramér-Rao bound, Fisher information, matrix functions,
optimization, quadratic matrix program.

I. INTRODUCTION

The Cramér-Rao bound (CRB) [11] is important in quantifying the
best achievable covariance bound on unbiased parameter estimation of
� parameters ���. Under mild regularity conditions, the CRB is asymp-
totically achievable by the maximum likelihood estimator. The compu-
tation of the CRB is motivated by its importance in various engineering
disciplines: medical imaging [6], blind system identification [18], and
many others.

A related quantity is the Fisher information matrix (FIM), whose in-
verse is the CRB. Unfortunately, direct inversion techniques are known
for their high complexity in space (����� bytes of storage) and time
(����� floating point operations or flops). Often, one is just interested
in a portion of the covariance matrix. In medical imaging applications,
for example, only a small region is of importance, which is related to
the location of a tumor or lesion. In this instance, computing the full
inverse of the FIM becomes especially tedious and intractable when
the number of parameters is large. In some applications, the FIM it-
self is singular, and the resulting Moore-Penrose pseudoinverse com-
putation is even more computationally demanding. Avoiding the addi-
tional overhead incurred from direct inversion or other forms of matrix
decompositions (Cholesky, QR, LU decompositions, for example) be-
comes a strong motivation.

Prior work [7], [8] proves the tremendous savings in memory and
computation by presenting several recursive algorithms computing
only submatrices of the CRB. Hero and Fessler [7] developed algo-
rithms based on matrix splitting techniques, and statistical insight
from the Expectation-Maximization (EM) algorithm. Only �����

flops are required per iteration, which is advantageous if convergence
is rapid, and the algorithms produce successive approximations that
converge monotonically to the CRB. Exponential convergence was
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